Minimizing Compositions of Functions Using Proximity Algorithms with Application in Image Deblurring
نویسندگان
چکیده
We consider minimization of functions that are compositions of functions having closed-form proximity operators with linear transforms. A wide range of image processing problems including image deblurring can be formulated in this way. We develop proximity algorithms based on the fixed point characterization of the solution to the minimization problems . We further refine the proposed algorithms when the outer functions of the composed objective functions are separable. The convergence analysis of the developed algorithms is established. Numerical experiments in comparison with the well-known Chambolle-Pock algorithm and Zhang-Burger-Osher scheme for image deblurring are given to demonstrate that the proposed algorithms are efficient and robust.
منابع مشابه
Minimizing Loss of Information at Competitive PLIP Algorithms for Image Segmentation with Noisy Back Ground
In this paper, two training systems for selecting PLIP parameters have been demonstrated. The first compares the MSE of a high precision result to that of a lower precision approximation in order to minimize loss of information. The second uses EMEE scores to maximize visual appeal and further reduce information loss. It was shown that, in the general case of basic addition, subtraction, or mul...
متن کاملFixed Point Algorithm Based on Quasi-Newton Method for Convex Minimization Problem with Application to Image Deblurring
Solving an optimization problem whose objective function is the sum of two convex functions has received considerable interests in the context of image processing recently. In particular, we are interested in the scenario when a non-differentiable convex function such as the total variation (TV) norm is included in the objective function due to many variational models established in image proce...
متن کاملMinimizing a General Penalty Function on a Single Machine via Developing Approximation Algorithms and FPTASs
This paper addresses the Tardy/Lost penalty minimization on a single machine. According to this penalty criterion, if the tardiness of a job exceeds a predefined value, the job will be lost and penalized by a fixed value. Besides its application in real world problems, Tardy/Lost measure is a general form for popular objective functions like weighted tardiness, late work and tardiness with reje...
متن کاملBlind Image Deblurring via Reweighted Graph Total Variation
Blind image deblurring, i.e., deblurring without knowledge of the blur kernel, is a highly ill-posed problem. The problem can be solved in two parts: i) estimate a blur kernel from the blurry image, and ii) given estimated blur kernel, de-convolve blurry input to restore the target image. In this paper, by interpreting an image patch as a signal on a weighted graph, we first argue that a skelet...
متن کاملMonte-Carlo SURE for Choosing Regularization Parameters in Image Deblurring
Parameter choice is crucial to regularization-based image deblurring. In this paper, a Monte Carlo method is used to approximate the optimal regularization parameter in the sense of Stein’s unbiased risk estimate (SURE) which has been applied to image deblurring. The proposed algorithm is suitable for the exact deblurring functions as well as those of not being expressed analytically. We justif...
متن کامل